
; In the inaugural issue of interactions, Rudd and
; Isensee [GJ offer suggestions for happier, health-
p ier prototypes. While many of these suggestions

are useful, we take issue with the author’s will-
ingness to unquestioningly embrace the current
trend toward “vacuous” prototyping. The
increased ease with which modern interfaces
can be created does not come without risk
because it strains our reliance on prototypes as
springboards for important new technology.
While this is not world-shaking, for we can all
become accustomed to looking at rapid proto-
types in this new way, it will continue to cause

discomfort. Vacuous prototypes
ate for the 1990’s what “vapor-
ware” was for the 1970’s and
early 1980’s.

Prototyping has long been
the neglected offspring of soft-
ware engineering. It is largely an
activity without rules or struc-
ture. Although software proto-
typing is as old as computing
there is little orthodoxy concern-
ing its use. This is in part a result
of the disorganized and variegat-
ed state of its literature. It is
more likely that an article on
prototyping will appear as a filler
chapter of a trade book on
another subject, a privately cir-
culated report, or in a “how-to”
section of a trade magazine than
in a refereed journal or confer-
ence proceedings.

Consider the following data.
In their recent survey of the lit-
erature, Jenkins and Kennedy
[4] identified 217 articles on
software prototyping. Of these,
the majority (119) are from such
non-refereed sources as industry
reports and working papers (48),

magazine articles (55) and un-refereed newslet-
ters and bulletins (16). Further, the subject
areas spanned (in decreasing frequency of
occurrence) such diverse topics as prototyping
support tools, case studies, prototyping
methodology, management issues, and proto-
type use, to name only the most frequent.
What is more, the overwhelming majority of
citations from all sources are non-critical
reports of experiences rather than theoretical or
philosophical discussions. Opinions abound.
Carefully articulated methodology is hard to
find.

interactions . . . april 1994

- . . _ .-

I
CI+C +C+

6

j
1
!

, q

However, the lack of orthodoxy is even more
due to the nature of prototyping itself.
Prototyping is inherently experimental and is
driven by the needs of the practitioners who
routinely work with tight software development
schedules and inflexible deadlines. Front-line
applications areas like office automation, lan-
guage translator development and information
retrieval have their own well-defined body of
foundational literature to rely on. There exist
more-or-less standard publication venues, spe-
cial interest groups, theme conferences, fre-
quent birds-of-a-feather workshops, and an
identifiable subculture of professionals who
specialize in just those applications. These com-
plement this foundational literature in defining
in at least a semi-formal way the accepted stan-
dards and practices of the discipline. With pro-
totyping the de facto standards and practices
tend to be more closely associated with projects
and development environments then with
foundational resources.

This is what is wrong with the practice of
software prototyping. What is right with it is
that it works well for the most part and serves a
very important function in the software devel-
opment process. This apparent incongruity is
a result of the fact that prototyping, as an
experimental activity, suffers from the same
problem as experimental computer science and
engineering generally. Here, practice frequent-
ly leads theory. While in some sciences, experi-
mentalists may confirm theoretical
engineering, experimentalists often define the
field as they go. This is a necessary by-product
of the rapid evolution of the field and the
increasing sophistication and complexity of its
artifacts.

If this is not unusual in other areas of exper-
imental computing, then what is the problem?
Enter visual programming environments
(Visual Basic, Visual C++, Objectvision,
Powerbuilder, Access, etc.). These products
allow a neophyte to create high-fidelity, though
content-free, prototypes. This was not a prob-
lem in years past, for the skill-set required for
developing front-end interfaces was the same
skill-set required for the back-end application.
Programming practice and experience tended to
have an amorphous character to them and, as
such, ported quite well to all aspects of program

interactions

development. So if one could find a program-
mer/analyst who knew how to write the inter-
faces, one could find a programmer/analyst
who was likely to know how to write the kernel
routines. It’s not that way anymore,

The problem is not with the visual program-
ming environments. On the contrary, they rep-
resent a positive, even if incremental, step
fonvard in applications development software.
The problem lies within the practice of proto-
typing.

The problem arises in a round about way. It
is now possible, with few technical skills, to cre-
ate an interface at a higher conceptual level and
with more sophistication than one can produce
in the back-end application. One result has
been the proliferation of hollow, or vacuous,
prototypes. This is a downside to the increased
ease of use of prototyping tools. This trend will
continue and increasing numbers of vacuous
prototypes will appear which purport to show
the viability of some idea or other although the
actual prototype has little or no explanatory and
predictive power.

So that no misunderstanding results, let me
state clearly that my remarks are NOT directed
toward the fields of interface design and engi-
neering. It is the misuse of interface design and
interface engineering tools that we are con-
cerned with. It is now possible to develop use-
ful and interesting, hi4 interfaces on top of
smoke and mirrors. The modern venture-capi-
tal prototype is coming to resemble a spaghetti
western: all theatrics and no substance. This can
be a real problem if the user expects of the pro-
totype that it is a platform upon which somc-
thing important will be constructed.

We are not opposed to placing more of the
responsibility for program design and develop-
ment in the hands of the end user either.
Whether user-centered or the product of col-
laboration, the success of a prototype-in con-
trast with the final commercial grade
application-requires a certain level of mutual
understanding and trust between the user/view-
er and developer. If this is not present, the cred-
ibility of the developer and confidence in the
project is lost. In the “good old days” it was
usually obvious from the behavior of the proto-
type what level of confidence was justified.
Now it’s getting harder to tell.

. april 1994

A vacuous prototype begins with some idea or other-not necessarily a good one. In this case, we
prototype machine translation to and from English, Hindi, Japanese, Chinese, Russian and Latin.
Development proceeds this way:

Step 1: Create Display. This
GUI is generic DOS written in

Visual Basic. ETH (elapsed
time for hacker) = 30 min-
utes.

1 .FILE FURlfAR

Step 3: Compile, link and
voila-“POLYGLOT: The
Automated Personal
interpreter” appears up and

running. Another useless,
content-free prototype is

unleashed upon the unsuspect-
ing public. Good taste, if not
professional ethics, dictates
that “caveat emptor” appear
on the sign-on screen. ETH = 15
minutes.

Step 2: Throw together a few
lines of code for each screen

object in a corresponding code
window, These code fragments
can be amateurish and yet still

produce an effective demon-
stration. ETH = 1 hour.

d

FILE mmr:

piiig--~ p!iz&--l

IF3WSLA11ON: t I Literal [Xl Idioaatic I I Gist

interactions . . . april 1994

--~ -_-, _- ---

At first gIance, one might think that this
problem will go away as more energy is direct-
ed toward the support of end-user program-
ming. We doubt that this be the case because
end-user programming support tools (e.g.,
application or scripting languages and macro
recorders) will tend to require greater levels of
technical prowess than visual prototyping tools.
This is because they will only give the appear-
ance of utility if the ideas that they embody are
correct. A vacuous prototype, on the other
hand, can give the appearance of importance
even if the underlying problem it represents is
intractable, for no sound understanding of
algorithms and data structures is required.

The new field of ‘programming- by-
demonstration” [2] is also immune to this criti-
cism. PBD seems a very useful extension to
conventional programming. The underlying
rationale is that if an end user can figure out
how to do something once, the computer ought
to be able to figure out how to do it after that.
However, this assumes that the user can figure
out how to do it the first time. It’s one thing to
develop software that can infer end users’ inten-
tions from their interactive behavior, it is quite

another to develop sofnvare that will infer an
algorithm from a nicely structured inter&c.
There is hope for the former. We’re not sure
that it even makes sense to look for the latter.

In this regard, we should also say something
about Visual Programming Languages (eg,,
Prograph) where the focus is on visual pro-
gramming of the entire application and not just
the interfaces. This emphasis sets these Ian-
guages apart from visual programming environ-
ments. It also makes them less suitable for
vacuous prototyping! They are so different that
they should be treated separately.

There is a natural hierarchy in the evolution
of modern applications development tools used
for prototyping. Although a bit over-simplified,
one may characterize this evolution in three
stages. First came the translator-cum-libraries
milieu in which the developer complemented
the high-level code with code from run-time
libraries for the time-intensive, though mun-
dane, support routines. Next, more sophisticat-
ed third-party libraries evolved. Robust,
specialized libraries for windowing, file man-
agement and database, memory management,
communications and the like became inespen-

Origins of the Vacuous Prototypimg ProlbUem

A Response to

Hal Berghel

James Rudaf and
Scott liensee

We agree with Berghel’s concern about vacuous prototypes. Customer wants and needs embodied in o

user-interface prototype that cannot be realized in the product’s implementation often

negate the benefit of protovping. We also agree with Berghel that prototyping must be done in tho

framework of a well-defined, methodical prototyping process.

We disagree, however, that improved tools are the cause of the vacuous prototyping problem.

Vacuous prototypes were around long before the latest generation of prototyping tools. They may be

the offspring of user interface designers who understand customer requirements, but are not knowl-

edgeable about implementation. Just as frequently, they are the offspring of experienced programmers

who know implementation quite well but are not particularly skilled at collecting user-interface requira-

ments of designing usable user interfaces. This was a common problem before user interface design

became an established profession and prototypes were nearly always done by programmers.

The software industry clamors for designers who can competently walk both sides of the fence.

Educational programs are usually compartmentalized into specialties like Psychology and Computer

Science. There are few programs that provide an adequate combination of both. To make matters

worse, the industry is pervaded with user-interface designers whose entire user-interface design train-

ing consists of attendance at a couple of satellite broadcasts from National Technological University, the

perusal of the latest design guidelines for Windows or Motif, and years of experience developing mar-

ginally usable Uls.

We have led user-interface prototyping and development efforts both at IBM and as user-intorfocc

consultants for other companies. Our experience tells us that user-interface prototyping is most SUCC~W

ful when it is conducted by skilled user-interface designers as an integrated part of of a well-planned

interactions . . . april 1994

____ -. ~_
--‘- ‘/ -’ ..; _,

-.

sive and standard fare in the developers’ toolkit.
It was sophisticated third-party libraries that set
the stage for the next stage in the evolution-
visual programming environments.

Visual programming environments support
modern graphical and visual techniques in the
development of the interface, while requiring
that the core of the program be created through
“code windows” in conventional ways. In other
words, what is visual about them is the devel-
opment of the interfaces. While this is impor-
tant from a practical point of view, it is not
that interesting from a theoretical point of view.

The earlier run-time library approach could
in principle accomplish much the same thing as
the visual programming environment. The dif-
ference is that the run-time approach was pro-
cedural and not functional or structural. The
fact that the visual programming environment
approach might be done in an object-oriented
way doesn’t change the fact that it is still little
more than a GUI-development tool, just as its
run-time library ancestor. In both cases, the
backplane code is still conventional
and text-based.

Visual programming languages on the other

hand use visual techniques for the program-
ming itself. This is a significant difference, and
one that represents an entirely new program-
ming and sofisvare development paradigm.
Here programming, and not just interface
design, is raised to the conceptual level. There
are no code windows to program. The kernel
code is as visual as the interface. Visual pro-
gramming languages compare to visual pro-
gramming environments much as visual
animations of algorithms stand to pseudo code.
Unlike visual programming environments,
visual programming languages represent a
quantum leap forward in programming tech-
nology, not merely an incremental extension.
In this sense it is more akin to programming by
demonstration than visual programming envi-
ronments. It is ironic that visual programming
languages tend to require a higher skill level for
vacuous prototyping than the simpler visual
programming environments. This has the effect
of discouraging their use for that purpose. We
see this as a positive feature.

This is the background against which we
placed Rudd and Isensee’s remarks lie “Add as
many features to the prototype as you can.

development process. This process keeps the prototype on track and helps to compensate for the imper-

fect knowledge and skills of many prototypers. From the beginning of the prototyping process, Laura

Lead Architect, for example, should work with customers in identifying and defining customer wants

and needs and translating them into user-interface requirements through the prototyping effort.

Conversely, Yolanda UserRep should consult with the architecture and programming team on a regular

basis to ensure that user-interface requirements as embodied in the prototype are indeed imple-

mentable by the development team. Our forthcoming book, “The Art of Rapid Prototyping”, from Van

Nostrand Reinhold describes a detailed process for successful rapid user-interface prototyping and

relates some of the pitfalls encountered when the designer/developer fails to adhere to such a process.

Berghel’s seamless prototyping proposal to design prototypes that reflect only what will be in the final

application defeats one of the major purposes of prototyping-to determine what could and should be

in the product. If the product is already defined, we could skip the prototype and start coding immedi-

ately. It is rare indeed, that we have such perfect knowledge in a software development project.

Prototyping is by its very nature experimental and iterative. It is a way of setting requirements rather

than just reflecting them.

This leads us to prototyping tip number 23: “Use prototyping to collect rather than just reflect

requirements.” Be sure to update your official prototyping wallet card. Until next time, Happy

Prototyping!

Scott lsensee James Rudd

isenseeQaustin.ibm.com jimruddQvnet.ibm.com

Hal Berghel is Professor

of Computer Science at

the University of

Arkansas and past

Director of the Center

for Artificial

Intelligence and Expert

Systems (CAIES).

email: hlb@acm.org

Even though you know some may not be feasi-
ble for the release.” Viewed from the perspec-
tive that we have just provided, this might be
considered alarming rhetoric. We were not
assuaged by the observation that “...successful
prototyping effort requires more that a proto-
typing tool and a background in user interface
design...“- an understatement.

Perhaps we expect too much of prototypes.
Perhaps the denotation “prototype” should not
require a non-coincidental fiurctional and oper-
ational resemblance to a final product. Many of
us still endorse the “minimal guarantee”
approach to prototyping where the user/con-
sumer is entitled to expect that a prototype will
contribute something significant to “...reliable,
economical, efficient software systems that
meet their specifications...” [3]. On this view,
the prototype is a real snapshot-in-time along a
product’s development path and not an abstract
representation of what might be.

In terms of showing the viability or effec-
tiveness of a complete program, vacuous proto-
types offer little more than basic presentation
software (e.g., Persuasion, Authorware). They
actually compare unfavorably when such soft-
ware is enhanced with multimedia support. So
what is the real value of the look-and-feel with-
out some level of assurance that the intended
back-end application is structurally sound?

What we oppose is the unquestioned
endorsement of vacuous prototyping as a uni-
versal software development strategy. Whether
one refers to it as rapid, quick-and-dirty, quick-
and-clean, or vacuous, it is a technique whose
importance to the total software development
exercise is proportional to the level of expertise
of its consumers and the integrity and ability of
the developers. In those cases when the con-
sumer is looking to the protorype for proof-of-
concept or proof-of-performance, it can be
either uninformative at best or misleading
at worst.

As an alternative strategy, we recommend
consideration of more robust prototyping
methods. While they have longer gestation
periods, they are likely to be more ‘seamless’
with the end products. While they are more
expensive, they are more functional and can be
relied on more heavily. In many, if not most,
situations the consumers and end-users can be

conditioned to accept this strategy (venture
capital solicitation aside).

Seamless prototypes proceed from a philoso-
phy that unlike back-end applications pro-
gramming, the front-end programming is
important IN sofnvare development but not
central TO software development. The under-
lying premise of this philosophy is that whatev-
er can be done with direct manipulation
interfaces can be done (perhaps with greater
dificulty and less finesse) with non-GUI inter-
faces augmented with keyboard overloading for
interrupts, windowing control, and so forth. As
a consequence, the overriding concern of the
seamless prototyper is that the range of func-
tionality of the prototype as closely resembles
that of the final product as the situation allows.

We view seamless prototyping [l] as an
extension of progressive prototyping [S] with
the difference that seamless prototypes invest
more effort in the front end of the development
cycle toward the end of maximizing functional
completeness, rigor and durability. Seamless
prototyping is no less immune to the problems
caused by fluid specifications, incongruities,
false starts, and administrative distractions and
interrupts than any other model. While not
appropriate in all situations, seamless prototyp
ing is especially amenable to those situations
where sofiware development is basically linear
and where feedback loops do not proliferate
beyond necessity. H

References:

IQ Berghel, H., On Seamless Prototyping, AC31 SIC

ICE Quarterb [1994: in press].

II Cypher, A. Watch What I Do: Programming by

Demonsration. M.I.T. Press, Gunbridge, MA. ,

1993.

II
Denning, I? and Dargan, I? A Discipline of Soft-

ware Architecture, interactions, l(1) (1994).

ml . Jenkins, A., and Kennedy, R.: An Annotated

Bibliography on Prototyping. IRMIS Working

Paper Wl 1, Institute for Research on the Managc-

ment of Information Systems, University of

Indiana, 1991.

rm King, D. Current Practices in Sofiuare Dewlop

ment. Yourdon Press, New York, 1984.

cm Rudd, J. and Isensee, S. Twenty-Two Tips for a

Happier, Healthier Prototype, interactions l(1)

(1994).

interactions . . . april 1994

-- --- ------ -- _-

