
COMMUNICATIONS OF THE ACM April 2007/Vol. 50, No. 4 15

Data hiding has
been with us as
long as there have

been digital computers
and networks. Some
readers of this column
might be old enough to
remember data hiding
on tracks above 80 of
the ubiquitous 5-1/4-
inch double-sided, dou-
ble-density floppy disks
in the late 1970s. It was
not uncommon to store
a program key on the
upper regions of the disk
for copy protection of
PC software. The sim-
plicity of this scheme
was elegant: the DOS
operating system would
only recognize the first
80 tracks, so the pro-
gram key would be lost
during any DOS copy
procedure. This became one of
the more common techniques of
data hiding in the early micro-
computer era, although its effec-
tiveness was short-lived because
applications programs could
access the out-of-standard tracks
directly by bypassing the OS
function calls and accessing disk

controller directly. This gave rise
to a cottage industry of copy-
protection-defeating (aka “pirat-
ing”) software as bitsmiths
quickly developed controller-
based copy software that ren-
dered this form of out-of-
standard copy protection obso-
lete. Now of only historical inter-

est, data hiding tech-
niques such as this led to
more sophisticated
approaches that remain
with us today.

Similar strategies exist
for data hiding over net-
works. Covert channeling
is a case in point. Two
popular covert channeling
techniques, protocol bend-
ing and packet crafting,
share the same out-of-
standard approach to con-
cealing data as the PC data
hiding example given pre-
viously.

Protocol bending
involves the use of a net-
work protocol for some
unintended purpose. Typi-
cally, this involves embed-
ding data in TCP/IP
packets in unexpected
places (akin to the higher-

level tracks in the floppy disk
example). A time-worn tactic is
covert channeling over Internet
Control Message Protocol
(ICMP) packets, for example, by
using the ICMP options field in
each packet to convey applica-
tions-layer covert data. Since
ICMP was created to transmitPE

P
M

O
N

TS
ER

R
A

T

Digital Village Hal Berghel

Hiding Data, Forensics, and
Anti-Forensics
Delving into the digital warrens for concealing data.

16 April 2007/Vol. 50, No. 4 COMMUNICATIONS OF THE ACM

command and control informa-
tion between network appliances
such as network destination
unreachable, source quenching,
echoes (pings) and their replies,
there is no expectation that appli-
cations-layer data will be included
in ICMP packets.

As a result, most firewalls and
intrusion detection/prevention
systems don’t inspect ICMP pack-
ets. This is where the protocol is
‘bent,’ which results in the estab-
lishment of a covert channel
between network endpoints that
lies under the radar of any net-
work administration tool that
assumes that ICMP packets will
all conform to IETF specifica-
tions. Perhaps the most widely
known ICMP covert channel tool
is Loki, a program named after
the contriver of mischief in Norse
mythology. In the absence of
exhaustive packet analysis, Loki
traffic looks like any other routine
ICMP request-reply pattern for
pings, source quenching, and so
forth, while in fact these ICMP
packets are transmitting covert
data. Another popular protocol
bender is Reverse WWW Shell,
which uses a form of protocol
bending called shell shoveling over
HTTP.

Covert channeling via protocol
benders deploys protocols in non-
standard and perhaps nefarious

ways. Contrasted with protocol
benders are covert channeling
tools that use packet crafting to
embed data in the actual packet
headers themselves. Covert_TCP
and NUSHU are two such exam-
ples. Covert_TCP uses active
channeling where it generates its
own packet train to create the
channel. On the other hand,
NUSHU is a passive channeler
that piggybacks on packets trans-
mitted to the TCP/IP stack by
other applications. The covert
effect is the same.

So there you have it: a summary
of data hiding from hiding applica-
tion data on either storage media
or TCP/IP packets in places where
the standards suggest it doesn’t
belong. Part one of this two-part
column deals with physical data
hiding on disk file systems.

PHYSICAL DATA HIDING

Physically hidden data is a special
case of dark data (aka data dark
matter). Information technolo-
gists speak of cyberspace, the
Internet, and corporate intranets
as mostly “dark,” in that they
contain large amounts of undis-
covered, concealed, misplaced,
missing, or hidden data. By some
accounts, dark data is an order of
magnitude larger than light data
(data that is known, linked,
observed, recovered, retrievable).

Covert data may be thought of
as a small subset of dark data.
There are many categories of
covert data. Encryption produces
dark data in the sense that while
the existence of the data isn’t hid-
den, its content is only readable
and usable to those who have the
correct decryption key. Steganog-
raphy produces dark data that is
typically buried within light data
(for example, a non-perceptible
digital watermark buried within a
digital photograph). Both are
illustrations of intentional con-
cealment. They share this charac-
teristic with physical data hiding.

Currently, the forensically
interesting dimension of physical
data hiding involves the tech-
niques that take advantage of the
physical characteristics of format-
ted storage media to hide data.
One early attempt to do this was
illustrated by Camouflage (cam-
ouflage.unfiction.com) that hid
data in the area between the logi-
cal end-of-file and the end of the
associated cluster in which the file
was placed (called file slack or
slack space). Though primitive,
hiding data in file slack has the
dual advantage that the host or
carrier file is unaffected while the
hidden data is transparent to the
host OS and file managers. The
disadvantage is that the hidden
message is easily recovered with a

Digital Village

Currently, the forensically interesting dimension of
physical data hiding involves the techniques that take advantage of the

physical characteristics of formatted storage media to hide data.

basic disk editor.
The ability to hide data on

computer storage media is a
byproduct of the system and
peripheral architectures. If all stor-
age were bit-addressable at the OS
level, there would be no place to
hide data, hence no physical con-
cealment. But for efficiency con-
siderations, system addressability
must be at more abstract levels
(typically words in primary, and
blocks in secondary). Such
abstractions create digital warrens
where data may go unnoticed or,
in some cases, be inaccessible.

DISK DRIVES AND DIGITAL

WARRENS

Where on a disk can data possi-
bly be hidden? A formatted hard
drive may be thought of as a logi-
cal structure mapped onto a phys-
ical medium. The logical structure
consists of partitions, file systems,
files, records, fields, and so forth.
The physical structure consists of
disks, cylinders, tracks, clusters,
and sectors. The absence of 1:1
mappings between the logical and
the physical realms creates the
digital warrens for concealed data.

This has several implications.
For example, applications software
and OSs typically interface with
the logical structure. If data was
concealed on a disk, the typical
user would never know it.

More frightening, however, is
that modern computer forensics
tools are not designed to uncover
all digital warrens. They typically
focus on those disk areas that have
already been observed to hold
concealed data. This presents a

major problem for law enforce-
ment, because the more sophisti-
cated hacker, criminal, or terrorist
could take advantage of the disk
warrens that are not easily found
by current forensics tools. So,
from a security and forensics
point of view it is wise to
approach the problem of data hid-
ing from the point of view of
what’s possible rather than what’s
already known.

For example, computer vendors
commonly create two reserved
areas when they format new com-
puter hard disks: a Host Protected
Area (HPA) for their proprietary
software and data, and a Device
Configuration Overlay (DCO)
area for disk metadata. You’ve
probably noticed the abundance
of software that bears the name of
the manufacturer that came with
your computer for management,
updating, and diagnostic func-
tions. The manufacturer wants
this software available to the user,
and wants to make it difficult for
the user to delete it. Such software
would typically fit in the HPA.

Access to of these areas by an
OS is prohibited by the disk con-
troller. This is the modern-day
analogue to the track 81–82 copy
protection scheme that was
described in the first paragraph of
this column. The hack in this case
would be to write a program at a
low enough level to access the
disk controller, and then hide the
data in the HPA or DCO—not
difficult at all if one knows the
physical boundaries and boots to
a non-host OS. Even within the
OS, it’s possible to reassign these

areas to OS control, change the
contents, and then reassign them
to the HPA or DCO. This is an
example of a hiding method that
takes advantage of what is more
or less a “physical” feature of the
drive architecture. So, with a little
sophistication one could bury
covert data in either the HPA or
DCO where it would be con-
cealed from even the OS.

Further down in the disk hier-
archy, we have the disk partition.
Modern OSs allow the adminis-
trator to redefine the number and
sizes of disk partitions with any
number of commercial and share-
ware utilities. It is fairly common
to place the OS (that is seldom
modified) on a partition by itself
and place all applications on
another partition. In this manner,
rigorous configuration changes to
the applications software would
be unlikely to affect the OS.

Therein lies another opportu-
nity to conceal data. Because the
logical partition may not fit per-
fectly within the physical subdivi-
sions of the disk, partition slack
results. Partition slack is the area
between the end of a logical parti-
tion and the end of the physical
block the partition falls within. As
with the HPA/DCO example,
this partition slack space is unus-
able to applications and the OS.
Extended partitions exacerbate the
problem by enabling a multitude
of embedded logical partitions,
each one of which contains a digi-
tal warren of 62 sectors.

If the partitions in aggregate do
not use up all of the available disk
space, volume slack results. One

COMMUNICATIONS OF THE ACM April 2007/Vol. 50, No. 4 17

could easily create a multitude of
partitions, load one with covert
data and then delete it. Since
deleting the partition does not
delete the data but only the refer-
ence to it by the OS, the data
remains, located beyond the reach
of applications and OS.

Down further still, is routine
disk slack. It would be very
unusual to find files that are
exactly as long as the sector/clus-

ter sequence in which they are
stored. At the sector level, any
unused part of a partially filled
sector is padded with either data
from memory (RAM slack) or
null characters (sector slack). After
the padded sector, any remaining,
unused sectors are simply ignored
(file slack). Once again, the OS
and applications have no access to
this space, which follows the end
of an active file but is within the
allocated sectors and clusters. Fig-
ure 1 lists 11 data warrens on file
systems that are typically unob-
servable. Variations on this theme
are endless.

FORENSIC IMPLICATIONS

Without question, the most
frightening side effect of these
digital warrens is the inability of
modern forensic tools to easily
recover the data. With worksta-
tions now shipping with RAID
five stacks and terabytes of disk
space, manual investigation of
hard drives at the byte level is
simply not viable.

In a sense, we’ve been living in
a fool’s paradise because today’s
crooks and criminals seldom take
extraordinary measures to conceal
data. Most of the forensics work
in law enforcement that I’m aware
of involves very basic data recov-
ery techniques with a few popular
forensics tools. However, it would
be unwise to expect this to con-
tinue, as miscreants and their mis-
deeds become more sophisticated.

For simplicity, I will illustrate
the principle of covert data hiding
on a hard disk with a simple
example based on the old FAT 16
format. The relevant design con-
sideration is a 1:1 mapping
between the entries in the file
allocation table and the physical
clusters on the disk. For example,
a FAT entry of hex 0000 indicates
the corresponding cluster on the
disk is free for use. A hex value of
0002-FFEF is a pointer to the
next cluster on the disk that is
part of a file. Hex FFF7 indicates
a bad cluster that has been culled
so that it can’t be reallocated.

You guessed it, our simple
example will involve changing
some entries in the FAT from
“free” to “bad,” and then storing
data on the bad clusters. In our

18 April 2007/Vol. 50, No. 4 COMMUNICATIONS OF THE ACM

Digital Village

Figure 1. Covert data warrens on disk drives
(source: H. Berghel, D. Hoelzer, and M.
Sthultz, Data hiding tactics for Windows and
Unix file systems; www.berghel.net/
publications/data_hiding/data_hiding.php).

COMMUNICATIONS OF THE ACM April 2007/Vol. 50, No. 4 19

Out-of-standard disk copying software has
passed into the digital dustbin. Trade maga-
zines of the late 1970s and early 1980s

would reveal widespread use of such software among
computer enthusiasts of that era.

Loki (www.phrack.org) has been a premier covert
channeling tool for Unix systems for many years.
Although it is widely associated with ICMP, in principle
it could use any protocol that is unlikely to be sub-
jected to close inspection by network security appli-
ances. Unless the packets are analyzed, the Loki
transmission looks innocuous (for example, an ICMP
ping request or a UDP DNS query). Loki can encrypt all
data for additional stealth, and swap between ICMP
and UDP on the fly. For further details on the ICMP and
UDP packet formats, see our Packet Pal Primer at
www.berghel.net/resources/packetpal/index.php.

Another approach to covert channeling is the reverse
WWW shell (aka, shoveling shell) developed by van
Hauser in the late 1990s (www.megasecurity.org/
Sources/rwwwshell-1_6_perl.txt). Like Loki, the
reverse WWW shell requires a server daemon to be run-
ning on the server. The daemon submits outbound
HTTP requests for commands from an external com-
puter. The intruder’s command is contained within the
HTTP response. The command is executed on the com-
promised computer, and the results are subsequently
shoveled to the intruder via a stream of outbound
HTTP packets. The HTTP traffic that contains the
covert data appears to the network to be routine Web
surfing.

Where Loki and the reverse WWW shell establish the
covert channel over an embedded protocol by means of
protocol bending, other techniques exist for establish-
ing a covert channel by means of packet crafting. Craig
Rowland’s Covert_TCP (www.securityfocus.com/
tools/1475) and Joanna Rutkowska’s NUSHU
(http://invisiblethings.org/papers/passive-covert-
channels-linux.pdf) are two such examples.

Covert_TCP creates “active channels,” that is, the
daemon actually generates packets with data buried in
either the ID field of the IP packet or the Sequence or
Acknowledgment Number fields of the TCP packet (see
www.berghel.net/resources/packetpal/index.php). By
contrast, NUSHU creates “passive channels” by
embedding the data in the SEQ and ACK fields of
existing packets by adding an offset (data value) to
the existing sequence number. The sequence of offset
values is the covert data. The daemon just has to
remember to subtract that offset from the returned
sequence number to fool the application. Nushu, inci-
dentally, means “woman’s writing.” It is a apparently
a secret language developed by Chinese women. “Tra-
ditional Chinese culture is male-centered and forbids
girls from any kind of formal education, so Nushu was
developed in secrecy over hundreds of years in the
Jiangyong county of Hunan province”; see www.crys-
talinks.com/nushu.html.

Dark data/digital dark matter is usually used in
some search or indexing context. See Paul Chin’s 2005
summary of dark data within intranets
(www.intranetjournal.com/articles/200507/pij_07_07_05a
.html) or the recent discussion on the PC Forum blog
where Yahoo’s Jeff Weiner estimates that 99% of the
world’s collective knowledge is dark data: blogs.zdnet.
com/BTL/?p=2715.

Cryptography, steganography, and digital water-
marking have been extensively reported in the profes-
sional literature, so a Web search will provide millions
of links.

For readers interested in file carving and disk wiping,
consult my August 2006 column. For a more thorough
treatment of the topic, see “Data hiding tactics for
Windows and Unix file systems,” by H. Berghel, D.
Hoelzer, and M. Sthultz at www.berghel.net/publica-
tions/data_hiding/data_hiding.php, and the February
2006 section of Communications on next-generation
cyber forensics. c

URL Pearls

case, we modified the
FAT to show clusters
24–29 as bad, and
then stored a GIF file
on those clusters.
The OS sees the clus-
ters as bad and won’t access them,
so the data is covert from the OS
point of view. But suppose we
look at this forensically.

A mainstay of modern forensics
tools is a file carver. File carvers
attempt to reconstruct the disk
contents without using the OS’s
meta-level information. Figure 2
shows the result of looking the
example disk with a modern file
carver. It can be observed that the
file carver ignored the file’s “magic
number” identifier that revealed it
as a GIF graphics file, and simply
reported the clusters as a lost file
fragment, that is, it saw something
there, but didn’t look to see what
it was so it, erroneously, assumed
that it must have been data
residue from a broken file alloca-
tion chain. This is analogous to
network administration ignoring
the contents of the options field of
an ICMP packet.

CONCLUSION

It isn’t a question of whether
covert data is being hidden on
hard drives of unsuspecting

users, but what is being hidden
and for what purposes. Well-
funded hackers, criminals, and
terrorists are already hiding the
data, while law enforcement tries
to catch up with the latest tactic
of the day. Challenged by
resource limitations, law enforce-
ment personnel must rely on the
technical community to help
provide solutions and motivate
vendors to pay closer attention to
such potential security breaches.

To make matters worse, anti-
forensic tools have been devel-
oped that are becoming as
sophisticated as the forensics tools
they seek to defeat. To illustrate,
the Metasploit project
(www.metasploit.com/projects/
antiforensics) has developed
three tools that are devastating
for automated forensic analysis
tools:

Timestamp provides complete
editing capabilities of the NTFS
timestamp rendering the time-
stamps recovered by forensics
tools unreliable in court),

Slacker is an automated tool

for storing files in slack space, and
to appear in the near future,

Transmogrify is a tool to defeat
file signature analysis.

The importance of this bur-
geoning art of anti-forensics can
not be overstated. Imagine the
impact on law enforcement if fin-
gerprint evidence was unreliable
and iris scans could be easily
spoofed. In many ways, anti-
forensics is scarier than network
hacking. It offers the triple threat
of hiding covert data, manipulat-
ing system data to exonerate a
criminal, and planting system
data to implicate an innocent
party—without leaving behind
telltale evidence.

Hal Berghel is associate dean of the
Howard R. Hughes College of Engineering at
the University of Nevada-Las Vegas, the
director of the Center for Cybersecurity
Research (ccr.i2.nscee.edu), and co-director of
the Identity Theft and Financial Fraud
Research and Operations Center
(www.it.ffroc.org).

© 2007 ACM 0001-0782/07/0400 $5.00

c

20 April 2007/Vol. 50, No. 4 COMMUNICATIONS OF THE ACM

Digital Village

Figure 2. File carver
analysis of covert data on
“bad” clusters (source: H.

Berghel, D. Hoelzer, and
M. Sthultz, Data hiding

tactics for Windows and
Unix file systems;

www.berghel.net/publica-
tions/data_hiding/data_

hiding.php).

